PLX-9054 PCI Performance Tests

D. W. Hawkins
dwh@ovro.caltech.edu
Document Revision: 1.3

Sept 27th, 2004

Contents
1 Introduction
2 PLX-9054 Control Register and Memory Spaces

3 PLX-9054 Control Registers
3.1 PCI Configuration Space Registers
3.2 PCIBARO/I Registerso ittt i
3.3 PCI Local Bus Registers

4 Serial EEPROM
5 Register Settings

6 Performance Tests
6.1 MARBR register tests
6.2 LBDRO register testso
6.3 PLX knowledge base articles
6.4 DMA transfers between boards
6.5 DMA transfers to and from the host

7 User-space Application and Driver Tests
7.1 Host transfers and time corruption oL
7.2 Testing notes e

A EEPROM Configurations
A.1 Single 8MB memory regiono
A.2 Dual 8MB memory region

B PCI Configuration Space Registers Dumps
C Configuration Registers Dumps

D PCI-to-PCI Bridge Dumps

w

O O

14

16

18
18
27
30
32
34

35
35
36

37
37
38

39

42

44

PCI Performance October 12, 2004

1 Introduction

The PLX PCI-9054 I/O Accelerator from PLX Technologies, Inc. (www.plxtech.com) is a high-
performance 32-bit, 33MHz, PCI master/target interface. This document contains performance
tests obtained from the COBRA Correlator boards. The objective of these tests was to determine
the register settings for the COBRA Correlator System boards that would result in optimal usage
of the PCI bus. Throughout this document the PLX PCI-9054 is referred to as the PLX-9054.

The PLX-9054 contains a PCI bus interface and a local bus interface. The PLX-9054 implements
the PCI bus protocol and converts PCI transactions into a simpler local bus protocol. The local
bus can be configured in several modes. The COBRA boards operate the PLX-9054 in J-mode, i.e.,
the local bus address and data are multiplexed. The local bus interfaces to the COBRA system
controller FPGA. The system controller FPGA acts as a local bus target and local bus master.
Local bus master mode allows the on-board DSP to access the PL.X-9054 control registers from the
local-bus side of the PLX-9054.

The COBRA Correlator system boards process data using onboard FPGAs and a DSP. Processed
data is transferred to the host on 100ms or 500ms timescales. Monitor data is transferred on 500ms
timescales. Debug access can also occur at any time. The host CPU runs Linux (eg. RedHat 9.0)
without any real-time patches. A single Linux host can control up to 17-boards in a single compact
PCI chassis, and up to 33-boards when two chassis are linked by PCI-to-PCI bridge boards. This
document contains performance tests from single board and multiple board configurations.

Multiple board testing exposed a problem with the Linux kernel. If the CPU is used to access
data from the board (PLX-9054 acts as a PCI Target), then the Linux kernel’s concept of time is
corrupted (probably due to missed or late timer tick interrupts). The CPU initiated reads or writes
to the boards complete correctly, i.e., no PCI bus protocol violation is detected by the kernel (which
is not to say that a PCI bus analyzer would not detect a problem). Since the COBRA System
applications use the host time to check data timestamps from the board, when the hosts time is
corrupted, all data from the boards gets erroneously flagged as being in error. Host time corruption
can be detected by running an NTP daemon and using /usr/sbin/ntpq -p to view the host time
relative to the NTP server.

2 PLX-9054 Control Register and Memory Spaces

The PLX-9054 contains several register spaces. From the PCl-side of the device, there is the standard
set of PCI configuration space registers, and an additional set of device configuration registers. The
device configuration registers appear as 256-bytes of non-prefetchable PCI memory in base address
register (BAR) 0, and as 256-bytes of PCI I/O ports in BAR1. The PCI configuration space
registers and the device configuration registers are also accessible from the local bus. Several of
the PCI configuration space and device configuration registers are loaded at boot time from a serial
configuration EEPROM.

Users of the PLX-9054 can define two custom PCI-to-local address spaces and an expansion
ROM address space (which is not used on COBRA). The COBRA boards are typically configured
to disable the PLX-9054 I/0O registers in BAR1 and overlay that region with Local Address Space 0
configured as an 8MB region of prefetchable memory. An alternative configuration considered was
to leave BAR1 enabled and configure BAR2 as 8MB of prefetchable memory, and BAR3 as 8MB of
non-prefetchable memory, with both 8MB regions decoding to the same backend logic. The argument
for the second configuration was that the 8MB prefetchable region could be used for DMA, while the
non-prefetchable region could be used for register (memory mapped I/O) accesses. Accesses to the
non-prefetchable region will not generate burst transactions to the backend logic, so would result in
lower performance if used for block data moves. However, for control register accesses the two PCI
memory regions should perform similarly. Appendix A contains both EEPROM configuration files.

PCI Performance October 12, 2004

3 PLX-9054 Control Registers

The register names in this section follow the designations given in the device data sheet. The byte-
addresses of the registers are defined in the COBRA device driver source in the file plx_registers.h.
This file also contains bit definitions for the most commonly used control register bits.

Sections 4 and 5 of the PLX-9054 data sheet (Version 2.1, January 2000) contain a description
of the C- and J-mode operation of the device, and Section 11 contains the register descriptions.
The PCI Configuration Registers are described in Section 11.2.1, Table 11-2, on p11-2 of the data
sheet, with Section 11.3 providing detailed descriptions of the registers. The PCI configuration space
registers are also accessible from the local address space starting at address Oh relative to the local-
bus base address of PLX-9054 registers. The PLX-9054 specific configuration registers accessible via
PCI BARO and BARI are described in Section 11.2.2 Local Configuration Registers, Section 11.2.3
Runtime Registers, Section 11.2.4 DMA Registers, and Section 11.2.5 Messaging Queue Registers.
Detailed descriptions of the register bits are given in Sections 11.4 through 11.6. The PLX-9054
configuration registers are also accessible from the local address space starting at a byte offset address
of 80h relative to the local-bus base address of PLX-9054 registers.

3.1 PCI Configuration Space Registers

Table 1 shows the PLX-9054 PCI configuration space registers along with their values when a board
is booted with a blank EEPROM. The configuration space registers can be read under Linux using
/sbin/lspci. The output of this command (see Appendix B) shows that the board base address
registers are configured as; BARO 256-bytes of 32-bit non-prefetchable memory, BAR1 256-bytes of
I/0 space, BAR2 1M-bytes non-prefetchable 32-bit memory, and BAR3 1M-bytes non-prefetchable
32-bit memory. A hex dump (/sbin/lspci with the -xxx option) of the PCI configuration space
gives the reset values shown in Table 1. Several of the registers are configured by the BIOS when the
system boots, eg. BAR register contents and the interrupt line routing register. The reset values of
the extended PCI configuration space match those given in the data sheet.

The COBRA boards are typically used with an EEPROM configuration that disables the PLX-
9054 BARI1 I/0O region and overlays it with an 8MB region of prefetchable 32-bit memory. The
COBRA boards can also be configured with BAR1 left enabled, and BAR2 and BAR3 with 8MB
prefetchable and non-prefetchable regions. Appendix A contains the two EEPROM configuration
files, while Appendix B contains register dumps of the PCI configuration space registers for a blank
EEPROM and the two EEPROM configuration files.

PCI Performance

October 12, 2004

Table 1: PLX-9054 PCI Configuration Space Registers.

Config. Register Reset value | Description
Byte (blank
Address EEPROM)
PCI Configuration Space:
00h PCIIDR 905410B5h | Device ID / Vendor ID
04h PCISR 02900113h | Status
PCICR Command
08h PCICCR 0680000Ah | Class Code
PCIREV Revision 1D
0Ch PCIBISTR 00004008h | Built-in self test
PCIHTR Header type
PCILTR Bus latency timer
PCICLSR Cache line size
10h PCIBARO F3D00000h | BARO (PLX-9054 Memory-mapped registers)
14h | PCIBARI 00002001h | BARI (PLX-9054 I/O-mapped registers)
18h PCIBAR2 F3C00000h | BAR2 (Local Address Space 0: 1MB default)
1Ch PCIBAR3 F3B00000h | BAR3 (Local Address Space 1: 1MB default)
20h PCIBAR4 00000000h | BAR4 (Local Address Space 2: unused)
24h PCIBARS 00000000h | BAR5 (Local Address Space 3: unused)
28h PCICIS 00000000h | Cardbus CIS pointer
2Ch PCISID 905410B5h | Subsystem ID
PCISVID Subsystem Vendor 1D
30h PCIERBAR 00000000h | Expansion ROM BAR
34h CAP_PTR 00000040h | Reserved / Next capabilities pointer
38h 00000000h | Reserved
3Ch PCIMLR 00000107h | PCI maximum latency
PCIMGR PCI minimum grant
PCITPR PCI interrupt pin
PCIILR PCI interrupt line routing
Extended Configuration Space:
40h PMC 00014801h | Power management capabilities
PMNEXT Power management next capability pointer
PMCAPID Power management capability ID
44h PMDATA 00000000h | Power management data
PMCSR_BSE Power management bridge support extensions
PMCSR Power management control/status
48h HS_CNTL 00804C06h | Hot swap control
HS_NEXT Hot swap next capability pointer
HS_CSID Hot swap capability ID
4Ch PVPDAD 00000003h | Vital product data (VPD) address
PVPD_NEXT VPD capability pointer
PVPD_CSID VPD capability ID
50h PVPDATA 00000000h | VPD data

PCI Performance October 12, 2004

3.2 PCI BARO/1 Registers

The PLX-9054 is configured via the standard PCI Configuration space registers, and a set of device
specific registers located in BARO and BAR1. The BAR1/0 registers are configured at boot time by
the boot EEPROM. The BARO registers are typically used by the device driver. eg. when dealing
with interrupts. Access to these registers is rarely required from user-space. Access is required from
user space when a blank EEPROM needs to be programmed (the EEPROM write protection register
needs to be cleared), and when a user wants to generate a local bus reset on a board. The COBRA
device driver provides user-space access to the PLX-9054 BARO registers.

Table 2 shows the BARO registers as viewed from the PCI bus from a board booted with a blank
EEPROM. Appendix C shows the results of reads from a PLX-9054 booted from a blank EEPROM,
an EEPROM that creates an 8M region, and an EEPROM that creates two 8MB regions.

PCI Performance

October 12, 2004

Table 2: PLX-9054 BARO Control Registers.

PCI Register Reset value | Description
Byte
Offset
Local Configuration Registers:
00h LASORR FFF00000h | Range for PCI-to-Local Address Space 0
04h LASOBA 00000000h | Local Base Address for PCI-to-Local Address 0
08h MARBR 00200000k | Mode / DMA Arbitration
0Ch PROT_AREA | 00300500h | Serial EEPROM write-protection address boundary
LMISC Local bus miscellaneous control
BIGEND Big/little endian descriptor
10h EROMRR FFFF0000h | Range for PCI-to-Local Expansion ROM
14h EROMBA 00000000h | Local Base Address for PCI-to-Local Exp ROM
18h LBDRO 40430043h | Local Bus Region Descriptors (Space 0 and ROM)
1Ch DMRR 00000000h | Range for PCI Master-to-PCI
20h DMLBAM 00000000h | Local Base Address for PCI Master-to-PCI Memory
24h DMLBAI 00000000h | Local Base Address for PCI Master-to-PCI I/0O
28h DMPBAM 00000000h | PCI Base Address for PCI Master-to-PCI
2Ch DMCFGA 00000000h | PCI Config. Address for PCI Master-to-PCI Config
Messaging Queue Registers:
30h OPQIS 00000000h | Outbound Post Queue Interrupt Status
34h OPQIM 00000008h | Outbound Post Queue Interrupt Mask
38h-3Ch 00000000h | (unused)
Runtime Registers:
40h MBOXO0 00000000h | Mailbox Register 0
44h MBOX1 00000000h | Mailbox Register 1
48h MBOX2 00000000h | Mailbox Register 2
4Ch MBOX3 00000000h | Mailbox Register 3
50h MBOX4 00000000h | Mailbox Register 4
54h MBOX5 00000000h | Mailbox Register 5
58h MBOX6 00000000h | Mailbox Register 6
5Ch MBOXT7 00000000h | Mailbox Register 7
60h P2LDBELL 00000000h | PCI-to-Local Doorbell Register
64h L2PDBELL 00000000h | Local-to-PCI Doorbell Register
68h INTCSR 0F010180h | Interrupt Control/Status
6Ch CNTRL 080F767Eh | EEPROM Control / PCI Cmd / User I/O / Init
70h PCIHIDR 905410B5h | Device ID / Vendor ID
74h PCIHREV 0000000Ah | Reserved / Revision ID
78h-7Ch 00000000h | (unused)

PCI Performance October 12, 2004

Table 2: PLX-9054 BARO Control Registers.

DMA Registers:

80h DMAMODEO 00000043h | DMA Channel 0 Mode

84h DMAPADRO 00000000h DMA Channel 0 PCI Address

88h DMALADRO 00000000h | DMA Channel 0 Local Address

8Ch DMASIZ0 00000000h | DMA Channel 0 Transfer Byte Count
90h DMADPRO 00000000h | DMA Channel 0 Descriptor Pointer
94h DMAMODE1 00000043h DMA Channel 1 Mode

98h DMAPADRI1 00000000h DMA Channel 1 PCI Address

9Ch DMALADRI1 00000000h DMA Channel 1 Local Address

AO0h DMASIZ1 00000000h | DMA Channel 1 Transfer Byte Count
A4dh DMADPRI1 00000000h | DMA Channel 1 Descriptor Pointer
A8h DMACSR1 00001010h | DMA1 Cmd/Status

DMACSRO DMAO Cmd/Status
ACh DMAARB 00200000h Mode/DMA Arbitration
BOh DMATHR 00000000h DMA Threshold
B4h DMADACO 00000000h DMAO PCI DAC
B&h DMADAC1 00000000h DMA1 PCI DAC
BCh 00000000h | (unused)

Messaging Queue Registers:
COh MQCR 00000002h | Messaging Unit Configuration
C4h QBAR 00000000h | Queue Base Address
C8h IFHPR 00000000h | Inbound Free Head Pointer
CCh IFTPR 00000000h | Inbound Free Tail Pointer
DOh IPHPR 00000000h | Inbound Post Head Pointer
D4h IPTPR 00000000h | Inbound Post Tail Pointer
D8h OFHPR 00000000h | Outbound Free Head Pointer
DCh OFTPR 00000000h | Outbound Free Tail Pointer
EOh OPHPR 00000000h | Outbound Post Head Pointer
E4h OPTPR 00000000h | Outbound Post Tail Pointer
E8h QSR 00000050h | Queue Status/Control
ECh 00000000h | (unused)
Local Configuration Registers: (Space 1)

FOh LAS1IRR FFF00000h | Range for PCI-to-Local Address Space 1
F4h LAS1BA 00000000h | Local Base Address for PCI-to-Local Address 1
F8h LBDR1 00000043h | Local Bus Region Descriptor (Space 1)
FCh DMDAC 00000000h | PCI Base Dual Address Cycle for PCI Master

PCI Performance October 12, 2004

3.3 PCI Local Bus Registers

The PCI configuration space registers and the PCI BARO/1 registers are also accessible from the
local bus. The PCI Configuration Space Registers occur first at addresses Oh to 3Ch, followed by a
block of unused addresses from 40h to 7Ch, the BARO/1 registers start at a byte offset of 80h and
continue until 17Ch, and then the PCI Configuration Space Extension Registers occur at addresses
180h to 190h. The header plx_registers.h defines the register addresses. The layout of each of
the three regions is identical to the layout from the PCI bus side, however, they each have a different
starting address. Table 3 shows the local bus register map.

Access to the PLX-9054 registers from the local bus enables the on-board DSP to access the PLX-
9054 registers. This access is very useful for debugging boards and learning the operation of the
PLX-9054 registers. Access to these registers by the DSP enables the DSP to perform Direct Master
transactions between itself and another board. Since the DSP accesses the PLX-9054 using 32-bit
word aligned addresses, Table 3 also shows register addresses in terms of 32-bits words. Figure 1
shows a dump of the PLX-9054 local-bus registers using the on-board DSP.

The register values in Table 3 were loaded to reflect those from the DSP dump in Figure 1.
The PCI configuration register settings are different relative to the previous table values due to a
different hardware configuration. The other PLX-9054 register settings are as expected for booting
with a blank EEPROM.

PCI Performance

October 12, 2004

Table 3: PLX-9054 Local-Bus Control Registers.

Offset address Reset value | Description
Byte Dword
PCI Configuration Space:
000h 00h 905410B5h | Device ID / Vendor ID
004h 01h 02900017h | Status / Command
008h 02h 0680000Ah | Class Code / Revision ID
00Ch 03h 00004008h | BIST / Header Type / Lat. Timer / Cache Line Size
010h 04h DI9EFF800h | BARO (PLX-9054 Memory-mapped registers)
014h 05h 0000D801h | BAR1 (PLX-9054 I/O-mapped registers)
018h 06h D9C00000h | BAR2 (Local Address Space 0: 1MB default)
01Ch 07h D9D00000h | BAR3 (Local Address Space 1: 1MB default)
020h 08h 00000000k | BAR4 (Local Address Space 2: unused)
024h 09h 00000000h | BARS (Local Address Space 3: unused)
028h 0Ah 00000000h | Cardbus CIS pointer
02Ch 0Bh 905410B5h | Subsystem ID / Subsystem Vendor ID
030h 0Ch 00000000h | Expansion ROM BAR
034h 0Dh 00000040h Reserved / Next capabilities pointer
038h 0Eh 00000000h | Reserved
03Ch O0Fh 00000109h | Max Lat / Min Gnt / Intr Pin / Intr Line
040h-07Ch | 10h-1Ch | 00000000h | (unused)
Local Configuration Registers:
080h 20h FFF00000h | Range for PCI-to-Local Address Space 0
084h 21h 00000000h | Local Base Address for PCI-to-Local Address 0
088h 22h 00200000h | Mode / DMA Arbitration
08Ch 23h 00300500h | Reserved / Serial EEPROM Prot. / Misc / BIGEND
090h 24h FFFF0000h | Range for PCI-to-Local Expansion ROM
094h 25h 00000000h Local Base Address for PCI-to-Local Exp ROM
098h 26h 40430043h | Local Bus Region Descriptors (Space 0 and ROM)
09Ch 27h 00000000h Range for PCI Master-to-PCI
0AOh 28h 00000000h Local Base Address for PCI Master-to-PCI Memory
0A4h 29h 00000000h | Local Base Address for PCI Master-to-PCI I/0O
0A8h 2Ah 00000000h | PCI Base Address for PCI Master-to-PCI
0ACh 2Bh 00000000h | PCI Config. Address for PCI Master-to-PCI Config
Messaging Queue Registers:
0BOh 2Ch 00000000h Outbound Post Queue Interrupt Status
0B4h 2Dh 00000008h Outbound Post Queue Interrupt Mask
0B8h-0BCh | 2Eh-2Fh | 00000000h | (unused)

10

PCI Performance October 12, 2004

Table 3: PLX-9054 Local-Bus Control Registers.

Runtime Registers:

0COh 30h 00000000h | Mailbox Register 0

0C4h 31h 00000000h | Mailbox Register 1

0C8h 32h 00000000h Mailbox Register 2

0CCh 33h 00000000h | Mailbox Register 3

0DOh 34h 00000000h | Mailbox Register 4

0D4h 35h 00000000h Mailbox Register 5

0D8h 36h 00000000h | Mailbox Register 6

0DCh 37h 00000000h | Mailbox Register 7

0EOh 38h 00000000h PCI-to-Local Doorbell Register
0E4h 39h 00000000h | Local-to-PCI Doorbell Register
0E8h 3Ah 0F010180h | Interrupt Control/Status
0ECh 3Bh 080F767Eh | EEPROM Control / PCI Cmd / User I/O / Init
0F0h 3Ch 905410B5h | Device ID / Vendor ID

0F4h 3Dh 0000000Ah | Reserved / Revision ID

OF8h-OFCh | 3Eh-3Fh | 00000000h | (unused)

DMA Registers:

100h 40h 00000043h DMA Channel 0 Mode
104h 41h 00000000h DMA Channel 0 PCI Address
108h 42h 00000000h DMA Channel 0 Local Address
10Ch 43h 00000000h DMA Channel 0 Transfer Byte Count
110h 44h 00000000h DMA Channel 0 Descriptor Pointer
114h 45h 00000043h DMA Channel 1 Mode
118h 46h 00000000h DMA Channel 1 PCI Address
11Ch 47h 00000000h DMA Channel 1 Local Address
120h 48h 00000000h DMA Channel 1 Transfer Byte Count
124h 49h 00000000h DMA Channel 1 Descriptor Pointer
128h 4Ah 00001010h | Reserved / DMA1 Cmd/Status / DMAO Cmd/Status
12Ch 4Bh 00200000k | Mode/DMA Arbitration
130h 4Ch 00000000h | DMA Threshold
134h 4Dh 00000000h DMAO PCI DAC
138h 4Eh 00000000h | DMA1 PCI DAC
13Ch 4Fh 00000000h | (unused)
Messaging Queue Registers:
140h 50h 00000002h Messaging Unit Configuration
144h 51h 00000000h | Queue Base Address
148h 52h 00000000h Inbound Free Head Pointer
14Ch 53h 00000000h | Inbound Free Tail Pointer
150h 54h 00000000h | Inbound Post Head Pointer
154h 55h 00000000h Inbound Post Tail Pointer
158h 56h 00000000h Outbound Free Head Pointer
15Ch 57h 00000000h | Outbound Free Tail Pointer
160h 58h 00000000h Outbound Post Head Pointer
164h 59h 00000000h Outbound Post Tail Pointer
168h 5Ah 00000050h | Queue Status/Control
16Ch 5Bh 00000000h | (unused)

11

PCI Performance October 12, 2004

Table 3: PLX-9054 Local-Bus Control Registers.

Local Configuration Registers: (Space 1)

170h 5Ch FFF00000h | Range for PCI-to-Local Address Space 1
174h 5Dh 00000000h | Local Base Address for PCI-to-Local Address 1
178h 5Eh 00000043h | Local Bus Region Descriptor (Space 1)
17Ch 5Fh 00000000h PCI Base Dual Address Cycle for PCI Master

PCI Configuration Space Extension Registers:
180h 60h 00014801h | Pwr Mgmt / Next Cap. Pointer / Cap. ID
184h 61h 00000000h Power management registers
188h 62h 00804C06h | Hot Swap Control/Status / Next Cap. Pointer / Cap. 1D
18Ch 63h 00000003h | Flag / VPD Address / Next Cap. Pointer / Cap. ID
190h 64h 00000000h | VPD Data

194h-1FCh | 65h-7Fh | 00000000h (unused)

12

PCI Performance October 12, 2004

C31> D 4E1800 80

Address: Contents:

004E1800: 905410B5 02900017 0680000A 00004008
004E1804: D9EFF800 0000D801 D9C00000 D9D00000
004E1808: 00000000 00000000 00000000 905410B5
004E180C: 00000000 00000040 00000000 00000109
004E1810: 00000000 00000000 00000000 00000000
004E1814: 00000000 00000000 00000000 00000000
004E1818: 00000000 00000000 00000000 00000000
004E181C: 00000000 00000000 00000000 00000000
004E1820: FFF00000 00000000 00200000 00300500
004E1824: FFFF0000 00000000 40430043 00000000
004E1828: 00000000 00000000 00000000 00000000
004E182C: 00000000 00000008 00000000 00000000
004E1830: 00000000 00000000 00000000 00000000
004E1834: 00000000 00000000 00000000 00000000
004E1838: 00000000 00000000 0F010180 080F767E
004E183C: 905410B5 0000000A 00000000 00000000
004E1840: 00000043 00000000 00000000 00000000
004E1844: 00000000 00000043 00000000 00000000
004E1848: 00000000 00000000 00001010 00200000
004E184C: 00000000 00000000 00000000 00000000
004E1850: 00000002 00000000 00000000 00000000
004E1854: 00000000 00000000 00000000 00000000
004E1858: 00000000 00000000 00000050 00000000
004E185C: FFF00000 00000000 00000043 00000000
004E1860: 00014801 00000000 00804C06 00000003
004E1864: 00000000 00000000 00000000 00000000
004E1868: 00000000 00000000 00000000 00000000
004E186C: 00000000 00000000 00000000 00000000
004E1870: 00000000 00000000 00000000 00000000
004E1874: 00000000 00000000 00000000 00000000
004E1878: 00000000 00000000 00000000 00000000
004E187C: 00000000 00000000 00000000 00000000
C31>

Figure 1: DSP RS-232 monitor interface readout of the PLX-9054 local-bus control registers (base
address 4E1800h). Viewing more of the DSP 1K decode area shows the PLX-9054 registers repeating
every 80h (since there are 128 registers). Note that these are the register values as read from a board
booted in the cPCI chassis. The PCI BIOS modifies the PCI configuration space, so the first 16
registers will appear different on other boards (or on a board booted on the benchtop).

13

PCI Performance October 12, 2004

4 Serial EEPROM

The PLX-9054 is initialized at power-up from a serial boot EEPROM. Section 4.4, p4-7, of the
PLX-9054 data sheet describes the operation of Serial EEPROM. The serial EEPROM allows the
loading of a user-defined PCI device identification (we leave it as PLX’s identification), and loading
of the PLX-9054 configuration registers. The EEPROM can be programmed using registers in the
PCI configuration space or by using registers in the device registers space to generate 12C control
signals to the EEPROM directly. In either case a driver is required to provide access to the PLX-
9054 registers, since the LMISC register enables writing to the EEPROM. The COBRA device driver
provides access to these registers if a blank EEPROM is found on a board. The driver implements
ioctl() calls to program the EEPROM using the vital product data (VPD) registers. Since the
EEPROM can disable access to the VPD registers, it is important that the EEPROM be configured
for ‘Long serial EEPROM load’” and that the EEPROM configuration leave VPD enabled. Table 4
contains the EEPROM memory map (p4-9 and p4-10 of the data sheet contain tables with equivalent
information).

Appendix A contains the EEPROM programming files required to give a single 8M prefetchable
region and a dual 8MB prefetchable/non-prefetchable memory regions.

14

PCI Performance

October 12, 2004

Table 4: PLX-9054 Long and Extra Long Serial EEPROM Load Registers.

EEPROM Register Example Description
Byte Bits Load value
Address Affected
PCI Configuration Space:
00h PCIIDR 905410B5h | Device ID/Vendor ID
04h PCICCR 0680000Ah | Class code
PCIREV Revision 1D
08h PCIMLR 00000100h | PCI maximum latency
PCIMGR PCI minimum grant
PCITIPR PCI interrupt pin
PCIILR PCI interrupt line routing
Runtime Registers:
0Ch MBOXO0 00000000h | Mailbox Register 0
10h MBOX1 00000000h | Mailbox Register 1
Local Configuration Registers:
14h LASORR FF800008h | Range for PCI-to-Local Address Space 0
18h LASOBA 00000001h | Local Base Address for PCI-to-Local Address 0
1Ch MARBR 10200000h | Mode / DMA Arbitration
20h PROT_AREA | 00300600h | Serial EEPROM write-protection address boundary
LMISC Local miscellaneous control
BIGEND Big/little endian descriptor
24h EROMRR 00000000h | Range for PCI-to-Local Expansion ROM
28h EROMBA 00000000h | Local Base Address for PCI-to-Local Exp ROM
2Ch LBRDO 4B4300C3h | Local Bus Region Descriptors (Space 0 and ROM)
30h DMRR FFFF0000h | Range for PCI Master-to-PCI
34h DMLBAM 01390000h | Local Base Address for PCI Master-to-PCI Memory
38h DMLBAI 013A0000h | Local Base Address for PCI Master-to-PCI I/O
3Ch DMPBAM 00000000h | PCI Base Address for PCI Master-to-PCI
40h DMCFGA 00000000h | PCI Config. Address for PCI Master-to-PCI Config
PCI Configuration Space:
44h PCISID 905410B5h | Subsystem ID
PCISVID Subsystem vendor 1D
Local Configuration Registers: (Space 1)
48h LASIRR 00000000h | Range for PCI-to-Local Address Space 1
4Ch LAS1BA 00000000h | Local Base Address for PCI-to-Local Address 1
50h LBRD1 00000000h | Local Bus Region Descriptor (Space 1)
PCI Configuration Space Extension Registers:
54h HS_NEXT 00004C06h | Next Capabilities Pointer
HS_CNTL Hot Swap Control/Status

15

PCI Performance October 12, 2004

5 Register Settings

The PLX-9054 contains a number of registers that affect the performance of the transfers on the PCI
bus. The follow list comments on the settings of those registers. Tests in the next section compare
the performance obtained with different bit settings.

1. LASORR: Local address space 0 range register.
e This register sets up the PCI BAR register settings for the custom logic on the PCI board
(PCI BAR2 or PCI BAR 1 depending on the settings in the LMISC register).
e Best performance should be obtained for prefetchable memory.
e The COBRA boards are configured as 8MB of prefetchable memory.
e LASORR = FF800008h.

2. MARBR: Mode/DMA Arbitration.

e This register sets up PCI read/write mode.

e MARBR/[21] = Local bus PCI Target release bus mode. This bit should normally be left
at 1. Tests showed that if this bit is set to 0, then the PLX-9054 doesn’t deassert HOLD,
so retains ownership of the PLX local bus. This means that the DSP can not access the
PLX registers, and hangs during reads to this area (since it arbitrates, but never receives
the bus). The DSP only ever accesses the PLX bus during debugging, but its easier to
just leave this bit at 1.

e MARBR[24] = PCI r2.1 features enable (was Target delayed read mode bit). Default
is 0, test 1. PCI r2.1 features are; 2'® clock timeout on retries (approximately 1ms at
33MHz), 16- and 8- clock latency rules, and enables the options available on bits 25 and
26 (which affect what to do with a write while a read is pending).

e MARBR/[28] = Read ahead mode. Default is 0, test 1.
e MARBR = 00200000h (default).
e Test; 01200000h (PCI r2.1 enabled), 10200000h (read ahead mode), 11200000h (both).

3. LBRDO: Local address space 0 bus region descriptor.

e This register sets up the operation of the PLX-9054 local bus.

e LBRDO0[7] BTERM# input enable and LBRD0[24] burst enable should both be set to 1
to enable continuous bursting.

e LBRDO[8] prefetch disable should be set to 0 to enable prefetching.

e LBRDO0[27] PCI Target write mode determines whether the PLX-9054 releases (0) or
keeps (1) the PCI bus during writes when the write FIFO fills. Setting this bit to 1
improves write performance.

e LBRDO = 42430043h (default with long EEPROM load) (single r/w access).
e Test; 434300C3h (continuous burst mode), 4B4300C3h (burst mode with PCI Target
write mode bit set).

4. INTCSR: Interrupt control and status register.

e This register sets up PCI and local interrupts.

e When using DMA, the DMA controller interrupt needs to be routed to PCI. The DMAMODEOQ
register is used to enable the DMA done interrupt and route it to PCIL.

16

PCI Performance October 12, 2004

5.

6.

e INTCSR[8] = 1 enables PCI interrupts.

e INTCSR[11] = 1 enables the local interrupt as an input (needed for our on-board DSP
to send interrupts to the host CPU).

e INTCSR[16] = 0 disables the local interrupt as an output (we don’t use any of the PLX
interrupts at the DSP yet).

e INTCSR[18] = 1 Enable the DMAO interrupt (this needs to be enabled as well as the
DMAMODEQ register).

e INTCSR[15] (LINT active) and INTCSR[21] (DMAO active) provide status on which
interrupt occurred - the device driver uses this to determine what to do.

e INTCSR = 0F040900h.
CNTRL: DMA and PCI Master PCI read/write commands.

e The DMA controller defaults to performing reads using the PCI command for PCI Mem-
ory Read Line (Eh) and writes using PCI Memory Write (7h). Using other command
codes may result in more efficient transfers (however, the transfers may have to be re-
stricted to multiples of cacheline sizes).

DMAMODEO: DMAO Mode register

e This register sets up the local bus operation during DMA accesses.

¢ DMAMODEOQ[7] BTERM# input enabled and DMAMODEOQ[8] burst enable need to be
set for continuous burst mode.

e DMAMODE[10] done interrupt enable, and DMAMODEOQ[17] interrupt routing select
local(0)/PCI(1) need to be set to enable interrupts to PCI.

o DMAMODEO = 00000043h (default).
e Test; 000205C3h (continuous burst with PCI interrupt enabled).

Here are some comments from PLX Technical Support regarding the register settings:

For DMA, the DMAMODEX registers rather than LBRDO govern Local bus properties such
as bursting. DMA is independent of Local Address Spaces.

PLX recommends that you set the PCI 2.1 Features Enable bit (MARBR|[24] = 1) to enable
delayed reads and other protocol enhancements. Please refer to PCI 9054 Design Notes revision
1.6 #3.

For fastest PCI Direct Slave transfer we recommend enabling continuous prefech (LBRDO[10,
8] = 00), Read Ahead mode (MARBRJ28] = 1), and the Pefetchable bit (LASORR[3] = 1 in
EEPROM). If the PCI 9054 can be permitted to hold onto Local bus ownership (i.e., other local
masters don’t require the bus), the PCI Target Hold Bus mode can be enabled (MARBR[21]
=0).

For continous bursting the DMA command code should be Memory Write rather than Memory
Write and Invalidate since burst length for the latter is restricted to cache line size.

For host CPU writes to PCI our Linux driver (to be released in SDK-PRO v3.5) performance
is approximately 45 MB/s.

17

PCI Performance October 12, 2004

6 Performance Tests

The performance tests in this section were obtained from boards plugged into a 19-slot ¢cPCI back-
plane. The 19-slot backplane uses one slot for the CPU and has 18 peripheral slots arranged as
three separate bridged PCI buses (with 6 slots per segment). The CPU is located in the right-most
slot (slot 19) and a system timing board is typically located in the left-most slot (slot 1), leaving
17-slots (slots 2 through 18) available for the COBRA boards. Test results were obtained from mul-
tiple boards to see the influence of the PCI-to-PCI bridges located in the backplane. CPU initiated
reads should suffer degradation across PCI-to-PCI bridges as the latency from read initiation to read
completion increases.

The measured performance rates, in MB/s, are as viewed by a Linux user-space process. The
process calls gettimeofday () either side of the transactions and uses the measured time, along with
the size of the transfer, to generate a transfer rate. This is the sustained transfer rate possible over
the PCI bus. The actual PCI bus transfer rate is higher than the rates measured from user-space.

6.1 MARBR register tests

This section tests bits in the Mode/DMA Arbitration (MARBR) register; specifically MARBR[24]
PCI r2.1 enable and MARBR|[28] PCI read ahead mode. For each test, the serial EEPROM was
reprogrammed and the system was rebooted. The settings in the serial EEPROM configuration were
relative to that of the single 8MB region configuration shown in Appendix A, with the setting of the
MARBR register altered as shown at the top of each table.

Tables 5 through 8 show read() performance for various buffer sizes in the different PCI seg-
ments in the cPCI crate. The read tests were performed to the SDRAM on the board. From the
performance tests, it is clear that MARBR = 0x10200000 gives the ‘best’ performance. However,
even that performance is fairly dismal for a bus capable of 132MB/s speeds. This test was performed
using the COBRA debug driver (cobra_debug.c) since its implementation of read () allows reading
from the board. The driver implements the read function by performing a memcopy_fromio () into
a kernel space buffer, and then a copy_to_user () to copy the data into user-space. This is a typical
implementation for a PCI target device.

Tables 9 through 12 repeat the read performance tests, however this time mmap () and memcpy ()
were used to perform the data transfers. The performance tests are comparable to the read()
results, with the shorter byte transfers being slightly faster for the memcpy () tests since there are no
driver calls. The largest performance hit experienced in both sets of tests is that due to the different
PCI bus segments. Take for example the Table 8 and 12 results for the 128KB transfers, there is
almost a factor of ten in performance degradation for slots 1 to 6 (furthest from the CPU) relative
to slots 13 to 18 (closest to the CPU).

Tables 13 through 16 show write () performance measurements, and Tables 17 through 20 show
mmap () and memcpy () write performance tests for the same MARBR register changes made during
the read tests. The write tests all perform similarly with approximately 10MB/s transfer rates.
The first PCI segment (closest to the CPU), slots 13 to 18, has slightly lower performance than
the other segments, probably due to the difference in write posting (acceptance) speed between
the PLX-9054’s that accept writes on the first segment versus the PCI-to-PCI bridge on the first
segment that then passes the writes onto the other segments.

18

PCI Performance

October 12, 2004

Table 5: PCI read () performance; Single 8M configuration with MARBR = 0x00200000.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 0.80 1.00 1.33
8 0.89 1.14 1.60
16 1.14 1.33 1.78
32 1.33 1.45 1.88
64 1.36 1.49 2.06
128 1.38 1.52 2.13
256 1.40 1.52 2.13
512 1.40 1.54 2.16
1024 1.40 1.54 2.16
2048 1.40 1.54 2.17
4096 1.40 1.55 2.16
8192 1.40 1.55 2.17
16384 1.40 1.54 2.17
32768 1.40 1.53 2.17
65536 1.40 1.53 2.16
131072 1.40 1.52 2.16

Table 6: PCI read() performance; Single 8M configuration with MARBR = 0x01200000, i.e.,
MARBR|[24] = 1 PCI r2.1 features enable.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 0.80 1.00 1.00
8 1.00 1.14 1.33
16 1.14 1.33 1.60
32 1.28 1.39 1.78
64 1.36 1.52 1.88
128 1.38 1.52 1.91
256 1.38 1.56 1.95
512 1.40 1.57 1.97
1024 1.40 1.57 1.97
2048 1.40 1.57 1.87
4096 1.05 1.58 1.98
8192 0.84 1.58 1.97
16384 0.40 1.32 1.98
32768 0.37 1.44 1.98
65536 0.35 1.53 1.98
131072 0.32 1.46 1.97

19

PCI Performance

October 12, 2004

Table 7: PCI read() performance; Single 8M configuration with MARBR = 0x10200000, i.e.,

MARBR|[28] = 1 Read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 0.80 1.00 1.00
8 1.00 1.14 1.60
16 1.23 1.33 2.29
32 1.23 1.45 2.67
64 1.33 1.49 2.78
128 1.35 1.52 3.37
256 1.34 1.52 3.46
512 1.35 1.54 3.51
1024 1.35 1.54 3.56
2048 1.35 1.54 3.57
4096 1.36 1.55 3.52
8192 1.36 1.55 3.51
16384 1.33 1.54 3.53
32768 1.36 1.53 3.51
65536 1.36 1.53 3.56
131072 1.36 1.52 3.55

Table 8: PCI read() performance; Single 8M configuration with MARBR = 0x11200000, i.e.,

MARBR[24] = 1 PCI r2.1 features enable and MARBR|28] read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 0.80 1.00 1.00
8 1.00 1.14 1.60
16 1.14 1.33 2.29
32 1.28 1.45 2.91
64 1.31 1.49 3.20
128 1.36 1.52 3.28
256 1.35 1.55 3.46
512 0.38 1.56 3.53
1024 0.38 1.56 3.54
2048 0.38 1.57 3.57
4096 0.41 1.57 3.58
8192 0.27 1.14 3.56
16384 0.45 1.32 3.50
32768 0.35 1.22 3.57
65536 0.38 1.24 3.57
131072 0.40 1.28 3.56

20

PCI Performance

October 12, 2004

Table 9: PCI read performance using mmap () /memcpy; Single 8M configuration with MARBR =

0x00200000.
Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 1.00 1.33 2.00
8 1.33 1.60 1.60
16 1.33 1.45 2.00
32 1.39 1.52 2.13
64 1.39 1.52 2.13
128 1.39 1.56 2.17
256 1.39 1.55 2.17
512 1.40 1.54 2.17
1024 1.40 1.55 2.17
2048 1.40 1.55 2.18
4096 1.40 1.55 2.16
8192 1.40 1.55 2.18
16384 1.40 1.55 2.17
32768 1.40 1.54 2.18
65536 1.40 1.55 2.18
131072 1.40 1.55 2.17

Table 10: PCI read performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x01200000, i.e., MARBR[24] = 1 PCI r2.1 features enable.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 1.00 1.33 2.00
8 1.33 1.33 2.00
16 1.45 1.45 1.78
32 1.33 1.52 2.00
64 1.42 1.56 2.00
128 1.41 1.56 1.97
256 1.39 1.57 1.83
512 1.40 1.57 1.98
1024 1.40 1.58 1.98
2048 1.40 1.58 1.98
4096 1.40 1.14 1.98
8192 1.04 1.14 1.98
16384 1.20 1.23 1.98
32768 1.29 1.18 1.98
65536 1.15 1.44 1.98
131072 1.21 1.27 1.98

21

PCI Performance

October 12, 2004

Table 11: PCI read performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x10200000, i.e., MARBR[28] = 1 Read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 1.00 1.33 1.33
8 1.33 1.33 2.67
16 1.33 1.45 2.67
32 1.33 1.52 3.20
64 1.33 1.56 3.20
128 1.35 1.54 3.56
256 1.35 1.56 3.51
512 1.36 1.56 3.56
1024 1.36 1.55 3.57
2048 1.36 1.55 3.58
4096 1.36 1.55 3.58
8192 1.36 1.55 3.59
16384 1.36 1.55 3.59
32768 1.35 1.55 3.58
65536 1.36 1.55 3.58
131072 1.36 1.55 3.59

Table 12: PCI read performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x11200000, i.e., MARBR[24] = 1 PCI r2.1 features enable and MARBR]28] read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 1.00 1.33 1.33
8 1.33 1.33 2.67
16 1.23 1.45 2.67
32 1.33 1.52 3.20
64 1.36 1.56 3.20
128 1.35 1.56 3.46
256 1.37 1.56 3.51
512 1.37 1.57 3.53
1024 0.38 1.57 3.57
2048 0.24 1.57 3.58
4096 0.41 1.14 3.59
8192 0.29 1.32 3.59
16384 0.31 1.57 3.59
32768 0.27 1.18 3.58
65536 0.28 1.27 3.59
131072 0.34 1.29 3.59

22

PCI Performance

October 12, 2004

Table 13: PCI write() performance; Single 8M configuration with MARBR = 0x00200000.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 2.00 2.00 2.00
8 4.00 4.00 4.00
16 4.00 5.33 5.33
32 6.40 8.00 6.40
64 8.00 8.00 8.00
128 9.14 9.14 9.85
256 10.24 9.85 9.85
512 10.45 10.45 9.85
1024 10.34 10.34 9.57
2048 10.29 10.24 9.53
4096 10.24 10.24 9.20
8192 10.19 10.18 9.49
16384 10.05 10.11 9.47
32768 10.08 10.09 9.41
65536 10.06 10.05 9.46
131072 10.03 10.04 9.43

Table 14: PCI write() performance; Single 8M configuration with MARBR, = 0x01200000, i.e.,
MARBR|[24] = 1 PCI r2.1 features enable.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 2.00 2.00 2.00
8 2.67 4.00 2.67
16 5.33 5.33 5.33
32 6.40 6.40 6.40
64 8.00 8.00 8.00
128 9.14 9.85 9.14
256 9.85 9.85 9.85
512 10.45 10.45 9.85
1024 10.34 10.24 9.66
2048 10.24 10.24 9.57
4096 10.24 10.24 9.50
8192 10.19 10.18 9.48
16384 10.12 10.11 9.47
32768 10.09 10.08 9.46
65536 10.07 10.07 9.45
131072 10.04 10.04 9.40

23

PCI Performance

October 12, 2004

Table 15: PCI write() performance; Single 8M configuration with MARBR, = 0x10200000, i.e.,

MARBR|[28] = 1 Read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 1.33 2.00 1.33
8 2.67 2.67 2.67
16 5.33 5.33 5.33
32 8.00 8.00 8.00
64 8.00 8.00 8.00
128 9.85 9.85 9.14
256 10.24 10.24 9.85
512 10.45 10.45 9.85
1024 10.34 10.24 9.57
2048 10.24 10.24 9.53
4096 10.24 10.21 9.50
8192 10.19 10.18 9.48
16384 10.12 10.11 9.47
32768 10.09 10.08 9.46
65536 10.07 10.05 9.45
131072 10.03 10.02 9.31

Table 16: PCI write() performance; Single 8M configuration with MARBR, = 0x11200000, i.e.,

MARBR[24] = 1 PCI r2.1 features enable and MARBR|28] read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 1.33 2.00 2.00
8 4.00 4.00 2.67
16 5.33 5.33 5.33
32 6.40 6.40 6.40
64 8.00 9.14 8.00
128 9.85 9.85 9.14
256 9.85 10.24 9.85
512 10.45 10.45 9.85
1024 10.24 10.34 9.66
2048 10.24 10.24 9.14
4096 10.24 10.24 9.50
8192 10.19 10.18 9.34
16384 10.12 10.11 9.41
32768 10.09 10.08 9.43
65536 10.06 10.06 9.45
131072 10.03 10.04 9.43

24

PCI Performance

October 12, 2004

Table 17: PCI write performance using mmap () /memcpy; Single 8M configuration with MARBR =

0x00200000.
Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 4.00 4.00 4.00
8 8.00 8.00 8.00
16 8.00 16.00 8.00
32 10.67 10.67 10.67
64 10.67 10.67 10.67
128 10.67 10.67 10.67
256 11.13 10.67 10.67
512 10.67 10.89 9.85
1024 10.45 10.45 9.66
2048 10.34 10.34 9.57
4096 10.29 10.29 9.53
8192 10.21 10.20 9.51
16384 10.10 10.11 9.43
32768 10.10 10.13 9.50
65536 10.11 10.10 9.48
131072 10.10 10.10 9.48

Table 18: PCI write performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x01200000, i.e., MARBR[24] = 1 PCI r2.1 features enable.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 4.00 4.00 4.00
8 4.00 8.00 8.00
16 8.00 8.00 8.00
32 10.67 8.00 10.67
64 10.67 10.67 10.67
128 10.67 10.67 10.67
256 11.13 10.67 10.67
512 10.67 10.67 10.04
1024 10.45 10.56 9.66
2048 10.40 10.34 9.57
4096 10.29 10.29 9.53
8192 10.21 10.20 9.50
16384 10.16 10.16 9.45
32768 10.12 10.12 9.50
65536 10.11 10.11 9.36
131072 10.10 10.10 9.48

25

PCI Performance

October 12, 2004

Table 19: PCI write performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x10200000, i.e., MARBR[28] = 1 Read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 4.00 4.00 4.00
8 8.00 4.00 8.00
16 8.00 16.00 8.00
32 10.67 10.67 8.00
64 10.67 10.67 10.67
128 10.67 10.67 10.67
256 11.13 10.67 10.67
512 10.67 10.89 10.04
1024 10.45 10.45 9.66
2048 10.34 10.34 9.57
4096 10.29 10.29 9.53
8192 10.20 10.04 9.50
16384 10.15 10.15 9.50
32768 10.12 10.13 9.19
65536 10.11 10.11 9.48
131072 10.10 10.10 9.48

Table 20: PCI write performance using mmap () /memcpy; Single 8M configuration with MARBR =
0x11200000, i.e., MARBR[24] = 1 PCI r2.1 features enable and MARBR]28] read ahead mode.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 4.00 4.00 4.00
8 8.00 8.00 8.00
16 8.00 8.00 8.00
32 10.67 8.00 8.00
64 10.67 10.67 10.67
128 10.67 10.67 10.67
256 10.67 10.67 10.67
512 10.89 10.89 9.85
1024 10.45 10.45 9.66
2048 10.40 10.34 9.57
4096 10.27 10.27 9.53
8192 10.24 10.09 9.50
16384 10.16 10.12 9.42
32768 10.13 10.12 9.50
65536 10.11 10.09 9.48
131072 10.01 10.02 9.48

26

PCI Performance October 12, 2004

6.2 LBDRO register tests

The default value for the Local Bus Descriptor Register for Address Space 0 (LBDRO) is 0x40430043
(see the register dump in Appendix C). The tests in the last section were performed with a LBDRO
setting of 0x4B4300C3 (see the EEPROM configuration file in Appendix A). The LBRDO bit changes
between those two settings are:

e LBDRO[24] Burst enable.

e LBDRO[25] Extra long load from serial EEPROM (so that the VPD registers stay enabled).
e LBDRO[27] PCI target write mode.

e LBRDO[7] BTERM# input enable.

The COBRA boards implement burst-mode transaction from the SDRAM, so LBRDO[7] should
always be set. Similarly the extra long serial EEPROM load is always required so bit LBDRO0[25]
should also be set. This leaves burst enable and PCI target write mode as the two bits to investigate.
Clearing burst mode should degrade both reads and writes, while clearing the PCI target write mode
should decrease write performance. For the tests in this section, the single 8MB region EEPROM
configuration was used, the LBRDO setting was changed, and the system rebooted.

The tables in the last section for MARBD = 0x10200000 show the read and write performance
with bursting enabled and the PCI write mode set. Tables 21 through 24 show read and write
performance measurements when bursting is disabled and the PCI write mode bit is clear (i.e.,
LBRDO = 0x424300C3). The read performance is degraded further on the segments farthest from the
CPU slot, whereas the write performance is barely affected. The lack of change in write performance
is due to the fact that the CPU initiated writes are not generating burst transactions to the PCI
bus (a PCI bus analyzer could be used to confirm this statement).

The burst enable bit and the PCI write mode bit do have definite effects on PCI performance,
its just that CPU initiated transactions can not show the effect. The DMA tests in Section 6.4 show
that PCI performance is optimized with both of these bits set.

27

PCI Performance

October 12, 2004

Table 21: PCI read () performance; Single 8M configuration with LBDRO = 0x424300C3.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 0.44 0.80 1.00
8 0.53 0.80 1.60
16 0.62 0.80 2.29
32 0.67 0.89 2.67
64 0.66 0.88 3.05
128 0.62 0.87 3.28
256 0.67 0.88 3.46
512 0.67 0.88 3.53
1024 0.67 0.87 3.40
2048 0.68 0.87 3.57
4096 0.68 0.87 3.58
8192 0.68 0.87 3.58
16384 0.68 0.87 3.58
32768 0.68 0.87 3.57
65536 0.68 0.87 3.57
131072 0.68 0.87 3.56

Table 22: PCI read performance using mmap () /memcpy; Single 8M configuration with LBRDO =

0x424300C3.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18
4 0.57 1.00 2.00
8 0.57 0.89 2.00
16 0.64 0.84 2.67
32 0.70 0.91 3.20
64 0.66 0.89 3.37
128 0.68 0.88 3.46
256 0.65 0.88 3.51
512 0.67 0.88 3.56
1024 0.68 0.88 3.57
2048 0.68 0.88 3.58
4096 0.68 0.87 3.59
8192 0.68 0.87 3.59
16384 0.67 0.87 3.50
32768 0.68 0.87 3.59
65536 0.68 0.87 3.58
131072 0.67 0.87 3.57

28

PCI Performance

October 12, 2004

Table 23: PCI write() performance; Single 8M configuration with LBDR0O = 0x424300C3.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 2.00 2.00 2.00
8 4.00 2.67 2.67
16 5.33 4.00 5.33
32 6.40 6.40 8.00
64 8.00 8.00 9.14
128 9.85 9.85 9.85
256 9.85 9.85 6.74
512 10.45 10.45 9.66
1024 10.34 10.34 9.66
2048 10.24 10.24 9.57
4096 10.21 10.24 9.50
8192 10.19 10.18 9.48
16384 10.12 10.10 9.47
32768 10.09 10.08 9.46
65536 10.06 10.06 9.46
131072 10.03 10.04 9.43

Table 24: PCI write performance using mmap () /memcpy; Single 8M configuration with LBDR0 =

0x424300C3.

Bytes Rate (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18

4 4.00 4.00 4.00
8 8.00 8.00 8.00
16 8.00 8.00 16.00
32 10.67 8.00 10.67
64 10.67 10.67 10.67
128 10.67 10.67 10.67
256 10.67 11.13 10.67
512 10.67 10.67 10.04
1024 10.45 10.45 9.66
2048 10.34 10.34 9.57
4096 10.06 10.29 9.53
8192 10.20 10.21 9.51
16384 10.15 10.15 9.50
32768 10.12 10.12 9.50
65536 10.11 10.11 9.48
131072 10.11 10.10 9.48

29

PCI Performance October 12, 2004

6.3 PLX knowledge base articles

The results in the last couple of sections show the dismal performance achievable with CPU initiated
read and write transactions. This poor performance is not due to the PLX-9054 bridge, its a ‘feature’
of the Intel Pentium. For example, the following comments were obtained from the PLX knowledge
base:

“x86 architecture does not perform burst read”

If you have a PC adapter card application, Direct Slave burst read cycles cannot be
performed since most PCs do not support burst read. However, bursting can be done
using a PCI bus master with DMA capability (for example PCI 9054RDK). To tell if a
PC is capable of doing burst read, we can look at the FRAME# signal. When it is driven
by the master, in a PC, FRAME# is asserted for no longer than one clock. This indicates
it is doing single cycle. When we have a PCI 9054RDK board plugged in and the PCI
9054 is the Master during a DMA cycle, you will see FRAME# stays longer than one clock.
So we know it is doing burst read. Most PC systems do single cycles on read during a
Direct Slave access. It is a limitation on a PC system. Please use DMA transfer, and
you will see FRAME# stays longer than one clock, indicating bursting capability.

“Cached read mode”

First the North bridge starts a read cycle and requests some data from the PLX device.
At this time the internal Target read FIFO of the PLX device is empty and it has to
fetch the data from the local bus. In the days before PCI revision 2.1, the only way
that a target could signal to an initiator that it did not have the data available was by
throttling the TRDY# (target ready) signal. This had the effect of holding the entire PCI
bus until the local data was available. If a slow device was attached to the PCI bus this
could result in very poor PCI performance. To overcome this, from PCI 2.1 onwards, a
target may issue a "Retry” to the initiator. This tells the initiator that the target is not
ready yet and that it should come back and retry the same access later. It is also known
as Delayed Read Mode. So, the PLX device issues a "Retry” and fetches the data from
the local bus into its FIFO. Some time later, the North bridge tries to read again. This
time we have the data ready and the PLX device can send the data. For every read access
there will be a read, retry and read. This is very slow. A typical system will achieve
a bandwidth of around 4-5Mbytes/s. Given the maximum bandwidth is supposed to
be 132Mbytes/s (for 33MHz and 32 bit) this is a terrible use of the bandwidth. Don’t
blame PLX! Our devices can burst read and write much faster than this. There are some
reasons (beyond the scope of this article) why Intel does not allow the North bridge to
burst read, so it’s probably not a good idea to shout at them either. What can we do to
resolve this problem? In PLX devices we have the ability to pre-fetch and cache data in
the FIFOs. When the first read cycle comes in, instead of just fetching the word which
was requested, we can fetch several words. If the North bridge requests a read from a
sequential address, we can immediately respond - removing the need for the retry cycle.
This method can approximately double the bandwidth to about 8-10 Mbytes/s (we have
a few customers who have achieved 15Mbytes/s this way). However, this is still a long
way from the 132Mbytes/s. If you want to get really high data rates then you will have
to use an initiator and push the data onto the PCI bus using writes. PLX Initiator
devices incorporate advanced DMA engines. With these we have been able to achieve
sustained data rates of up to 122Mbytes/s. In summary, even though your application
may only require the functionality of a target, if your initiator can only single cycle read
you may be forced to use an initiator device.

30

PCI Performance October 12, 2004

“Limited PCI bursting with x86 architecture”

Reads originated from an x86 (Intel) architecture CPU destined to a PCI slave device
(such as PLX 9050) will never be bursted. This is a x86 IA32 limitation. By their nature,
reads from a PCI slave device are to uncached memory. (The PCI device is mapped into
uncached memory). As a result, reads are blocking (another read can’t emerge from the
CPU until the earlier read is completed). So this leads to the situation that the largest
"burst” of data is confined to the largest ”"single” read that the x86 CPU can perform
to uncached memory. Currently, this is a 64 bit read, done using the instruction MOVQ
r64, mem. So, the largest read burst that you can get by using an x86 CPU to read
a PCI slave is a 64 bit, or "two” data phase burst. (Pretty darn short burst, since it
is not even a full cache line). Tricks can be played that could allow a faster read, but
they are involved and error prone. For instance, the PCI slave device’s memory could
be mapped as cacheable (likely writethrough mode would be best). Then when the PCI
slave device was read by the CPU execution unit, the cache unit would pull in a whole
cache line at a time. This could be done for consecutive addresses. The result would be
”bursting” of x86 cacheline size (64 bytes per line), or 16 PCI data transfer clocks. (Not
that fantastic either, but better). Unfortunately, you then have to flush the CPU cache
before transferring again from the same address. (That is usually detrimental to system
performance, so no one does it). In summary, the x86 will block on a read to uncached
memory. This limits the ”burst” size to the size of the largest single "read” transaction
to uncached memory, which is 64-bits, 4xbytes, 2 PCI data clocks, all byte enables. If
you play games with the cache, and mark the memory as write through, then you can
get 64 bytes reads, but the cost is flushing the entire CPU cache whenever address reads
will repeat. This is so expensive that it defeats the gains realized in the larger bursts, so
it usually is not done. (Plus getting an OS interface that allows WBINVD cache flush
instruction to be executed is a hassle). As to burst writes, chipset (Intel 440BX and VIA
MVP3, for example) architectures won’t burst more than 4 LWords at a time out of main
memory to a PCI target device. This is because uncached writes coming out of the CPU
don’t gather in posted write buffers in the chipset in greater numbers than 4 LWords at
a time to allow greater bursts. You won’t get greater bursts, no matter how hard you
try. You can get limited bursting if you work at it. The recommended combination is: 1.
Map the device memory as USWC (write combined) if possible. NT has functions that
allow for this, and some other OS do as well. This facility resets the x86 architecture
MTRR registers to give a USWC format to some memory. Some video drivers call this
interface; try looking at a video driver sample in the NT DDK. 2. Use a chipset with
lots of posted write buffers, and one which can combine sequential writes to linearly
sequential addresses into a single burst. A chipset that can combine sequential partial
writes into a single PCI burst is the best. 3. Use the MOVQ mem, m64 instruction in
a tight loop rather than the REP movsd instruction. The former at least outputs 64-bit
partial writes, the latter only does 32-bit partial writes. Write performance with bursts
of 4 LWords originating from an x86 architecture CPU is approximately 50MB/s. High
performance devices such as the 9054 are set up as bus masters so they can master their
own traffic with longer bursts. The 9054 can achieve transfer performance of 122MB/s.

31

PCI Performance October 12, 2004

Table 25: PCI segment-to-segment DMA performance (1MB transfers).

Master (DMA) | Target slot || DMA ‘read’ | DMA ‘write’

slot (MB/s) (MB/s)

6 7 39 88

7 6 32 69

12 13 39 113

13 12 39 69

6 13 27 52

13 6 27 56

6.4 DMA transfers between boards

The recommended method for transferring large blocks of data is via DMA. Since the Intel Pentium
does not have a local DMA controller, the PLX-9054 DMA controller needs to be used for both
read and write DMA operations. To determine the maximum possible bus bandwidth achievable
from a COBRA board, it was necessary to add an ioctl() call to the COBRA debug device
driver to configure board-to-board DMA. Basically the CPU sets up the registers on the Master
board and then waits for the DMA interrupt to time how long the DMA transaction took. The
ultimate limit to the DMA transfer tests is the performance of the backend logic. The COBRA
board SDRAM controller implements a burst-mode interface to the PLX-9054 so can achieve over
100MB/s performance. It can not reach the maximum performance of 132MB/s since the SDRAM
refresh cycles and page boundaries cause breaks in the burst transactions.

A board-to-board test was setup to transfer 1MB of data from one board to another. All boards
were configured with the single SMB EEPROM configuration given in Appendix A. The results of
board-to-board DMA transfer tests are summarized as follows;

e Transfers between boards on the same PCI bus segment occurred at 119.5MB/s in either
direction (DMA ‘read’ from PCI into local memory, or DMA ‘write’ from local memory onto
the PCI bus). (This is the rate viewed from the Linux user-space process, so the transfer rate
on the PCI bus is actually higher).

e Table 25 shows the transfer rates between boards on different segments. The different PCI
bridges result in transfer rate asymmetries. The performance measurements across similarly
located bridges is not even matched!

Given these board-to-board observations, one could suspect that the performance of the DMA
transfers from the host to the COBRA boards will ultimately be limited by the configuration of the
PCI-to-PCI bridges. Configuration of the PCI-to-PCI bridges in the system to optimize performance
is a possibility. However this has not been investigated.

Table 26 investigates the performance of board-to-board transfers with various combinations of
bit settings on both the Master (DMA) and Target PLX-9054s. The performance tests across PCI-
to-PCI bridges showed quite a lot of variation. The optimal performance parameters were obtained
with the settings used in the single 8MB region EEPROM configuration shown in Appendix A.

32

PCI Performance

October 12, 2004

Table 26: PCI board-to-board (same segment) DMA performance (1MB transfers).

DMA Test Master Master/Target | Master/Target | Transfer rate
Case DMAMODEO MARBR LBRDO (MB/s)
Same PCI bus
Non-burst
Read 000204C3h 00200000 424300C3 >13
Write 000204C3h 00200000 424300C3 7.7
Burst
Read 000205C3h 00200000 434300C3 119.3
Write 000205C3h 00200000 434300C3 10.1
Write (keep PCI bus) 000205C3h 00200000 4B4300C3 119.7
Write (keep and PCI r2.1) 000205C3h 01200000 4B4300C3 119.7
Read (read ahead) 000205C3h 10200000 4B4300C3 119.7
Read (PCI r2.1) 000205C3h 01200000 4B4300C3 119.7
Read (PCI 2.1 000205C3h 11200000 4B4300C3 119.7
and read ahead)
Bridged PCI bus
Non-burst
Read 000204C3h 00200000 424300C3 <7.4
Write 000204C3h 00200000 424300C3 7.7
Burst
Read 000205C3h 00200000 434300C3 >18
Write 000205C3h 00200000 434300C3 >10
Write (keep PCI bus) 000205C3h 00200000 4B4300C3 >69
Write (keep and PCI r2.1) 000205C3h 01200000 4B4300C3 >69
Read (read ahead) 000205C3h 10200000 4B4300C3 >32
Read (PCI r2.1) 000205C3h 01200000 4B4300C3 >18
Read (PCI r2.1 and 000205C3h 11200000 4B4300C3 >32
read ahead)

33

PCI Performance

October 12, 2004

Table 27: PCI DMA read() (i.e., board-to-host) performance.

Bytes Block DMA (MB/s) Scatter-Gather DMA (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18 || Slots 1-6 | Slots 7-12 | Slots 13-18
1K 36.6 39.4 42.7 4.7 4.5 4.0
2K 53.9 58.5 64.0 8.6 8.8 9.1
4K 65.0 71.9 77.3 15.3 10.6 16.1
8K 73.8 81.1 84.5 26.3 22.4 28.0
16K 7.3 80.3 84.5 39.3 34.2 43.1
32K 79.0 84.2 85.1 55.1 61.4 62.5
64K 80.6 81.6 85.9 66.8 7.8 8.7
128K 80.2 7.9 85.3 75.5 88.6 89.5
Table 28: PCI DMA write() (i.e., host-to-board) performance.
Bytes Block DMA (MB/s) Scatter-Gather DMA (MB/s)
Slots 1-6 | Slots 7-12 | Slots 13-18 || Slots 1-6 | Slots 7-12 | Slots 13-18
1K 12.0 13.3 15.8 2.5 2.7 2.8
2K 13.6 16.0 18.3 5.2 5.9 6.2
4K 14.2 17.3 19.1 6.2 7.2 7.7
8K 14.6 17.7 19.8 8.8 10.3 11.2
16K 14.8 18.0 20.2 11.0 13.1 14.5
32K 14.8 18.1 20.3 12.8 15.4 17.0
64K 15.0 18.3 20.5 13.9 16.7 18.6
128K 15.0 18.2 20.4 14.4 174 19.4

6.5 DMA transfers to and from the host

Tables 27 and 28 show the read and write performance of DMA. For the COBRA system, DMA will
be used to transfer processed data from the boards to the host, so the performance measurements
of interest to that system are the DMA read measurements. The COBRA debug driver implements
three read/write functions; CPU initiated, block-DMA, and scatter-gather DMA. The block-DMA
implementation allocates a single kernel buffer of up to 128KB and DMAs between the host and
board using that buffer. The contents of the user-space buffer are either copied into the kernel buffer
for a write, or copied out of the kernel buffer for a read. The scatter-gather DMA implementation
maps the user-space buffer into the kernel using Linux’s kiobuf mechanism. The user-space buffer
appears in the kernel as a scatter-gather list of 4K pages. The PLX-9054 DMA controller DMAs
into or from these pages using a DMA descriptor list located in the kernel (locating the list in
local memory did not affect performance). The difference between the block DMA performance
measurements and the scatter-gather DMA performance measurements can be attributed to the
lower overhead experienced by the block DMA operation. The poor DMA write performance could
be due to non-optimal PCI-to-PCI bridge settings.

Since the COBRA boards will not be transferring more than 128K per DMA operation, the
COBRA driver uses block DMA for data transfers.

34

PCI Performance October 12, 2004

7 User-space Application and Driver Tests

7.1 Host transfers and time corruption

The original version of the COBRA driver used CPU initiated reads and writes to perform data
transfers, as testing of that driver showed the performance to be adequate. When the driver was
used in the 19-slot cPCI chassis (which is segmented into three 6-slot peripheral segments by two
PCI-to-PCI bridges), the driver still appeared to work fine, however Linux time was being corrupted.
Operating boards in the slots nearest the CPU seemed to work fine, but moving them onto the next
PCI segments caused time to break. Observing the status of time via NTP (/usr/sbin/ntpq -p)
showed NTP jumping by a few milliseconds, to as much as several seconds! This issue was the reason
behind the tests performed in this document.

The COBRA debug driver (cobra_debug.c) was developed to investigate CPU initiated trans-
actions versus block mode and scatter-gather mode DMA transfers. That driver implements the
PLX device driver, and a trimmed down version of the COBRA control driver, with the read () and
write() functions implementing board read/write access (the COBRA control driver read/write
interface implements a host-to-DSP message queue). Testing with the debug driver showed that op-
timal data transfer performance for our specific use of the PCI bus was achieved using block mode
DMA to transfer processed data, and monitor data. Time corruption was still observed after DMA
was implemented in the COBRA data device, however, once transfers were started and NTP was
restarted time corruption no longer occurred. The problem was isolated as being due to the driver
clearing SDRAM on device open. This operation caused the CPU to take up to 800ms to complete
the open() system call. Removing the clearing of SDRAM reduced the open time to on the order of
a millisecond, and stopped time corruption from occurring at device open(). Unfortunately, tests
in the next section show that time glitches still occur.

The main result of the PCI tests is that Linux is unable to perform PCI operations that will
cause it to become ‘too busy’, where ‘too busy’ either represents a transaction of longer than an
OS tick of 10ms, or a transaction that is shorter than 10ms but causes the OS to miss, or service
too late, a critical OS function. With interrupts enabled, one would expect that an OS tick would
generate an interrupt, and that interrupt would be serviced regardless of what the driver was doing,
however, this expectation appears to be false. User-space programs should be able to perform I/0
intensive operations to the PCI bus, since they will be interrupted by the OS (although NTP kicks
of 30ms have been observed for some operations). So, the conclusion is that you should not perform
I/0O intensive operations in the device driver! This is fairly obvious requirement, but who knew that
PCI bus performance of the Intel Pentium for CPU initiated transactions was so bad!?

35

PCI Performance October 12, 2004

7.2 Testing notes

After making modifications to the COBRA device driver and debugging those modifications. The
following tests were performed:

e A dual SZA chassis test containing 14 correlator boards in the first chassis and 13 correlator
boards in the second. The number of boards in the two crates reflected the capabilities of the
timing generator boards—the timing generator boards were designed for use in the COBRA
crates and so the boards only supply the PLL reference clock to 13 slots in the new crates
(the board in the first crate was modified to drive an extra slot). Various short-timescale and
long-timescale tests were performed, and 30ms time glitches were observed infrequently.

e COBRA crate single band test. An COBRA band consists of 3 digitizer boards and 3 correlator
boards. The digitizer RFs were fed from the lab noise source. NTP had to be restarted after
the boards were setup, and tests were ran for an hour. A single timeout error was recorded
during the test. Time glitches that are then pulled back in by the NTP server usually generate
tens of timestamp errors, so the single error recorded during this test was likely due to OS
scheduling.

e SZA crate dual-band test. An SZA band consists of 4 digitizer boards and 3 correlator boards.
For the dual-band test, two of the SZA bands were plugged into an SZA crate (14 boards
total), and the COBRA 6-antenna lab noise source hardware was plugged into 3 of the four
SZA digitizers, with the outputs from those 3 digitizers cabled to the 3 correlator boards
in the COBRA 15-baseline arrangement. The boards not plugged into the RF source were
programmed to output test pattern data. During some of the crate setup and data capture
tests, a couple of 30ms time glitches were observed. A data capture test was then run for two
hours, and no timestamp errors were recorded (so either no 30ms glitches occurred, or they
occurred and did not trigger a DSP-to-host timestamp tolerance error).

Tests of longer duration will be performed as part of system-level tests using multiple crates of
boards. Any issues exposed there will be noted in future revisions of this document.

Adding DMA to the COBRA device driver resolves the issue of time being continuously corrupted
when operating in the new SZA crates, however, the testing above showed that time glitches of around
30ms are still possible. Since the NTP service eventually corrects these errors, this residual issue
is probably acceptable. The data transfer tests were performed using a transfer period of 100ms to
the host (as was used in the COBRA correlator system). CARMA intends to use 500ms transfers
to the host, so 30ms glitches relative to a 500ms transfer period will not cause data transport errors
to occur. These tests did not include 500ms monitor data transport and transport of the digital
delays and other information down to the DSP. When the software that implements these transfers
is complete, tests will be performed to confirm that these modifications do not induce NTP glitches.

During one day of testing in the lab with cobracpul0, a continuous drift of time relative to NTP
was observed. Time would drift until it was about 20ms out, and then the NTP service would either
hold it there, or bring it back in. The CPU was rebooted with no COBRA boards in the crate, and
the same problem was observed! The source of the problem was never determined. It could have
been in the CPU, or the network traffic between the CPU and NTP server could have been the issue.
The system should not depend on NTP to do any better than 20ms to 30ms.

The conclusions to be drawn from this testing are; that the major problem of continuous time
corruption has been mitigated, and that NTP accuracy is limited to 50ms. Both conclusions are
inline with CARMAS requirements.

36

PCI Performance

October 12, 2004

A EEPROM Configurations

A.1 Single 8MB memory region

The following configuration sets up a single 8MB prefetchable 32-bit memory region. The PLX-9054
BARI1 I/0 region is disabled, and overlayed with Local Address Space 0, the 8MB region. The

EEPROM configuration file is:

#
#
#
#
#
#
#

PLX-9054 Serial EEPROM Settings

DWH 2/02.

Byte |
offset |

Dword
value

address|

00
04
08
Oc
10
14
18
1c
20
24
28
2c
30
34
38
3c
40
44
48
4c
50
54

905410b5
0680000a
00000100
00000000
00000000
££800008
00000001
10200000
00300600
00000000
00000000
4b4300c3
££££0000
01390000
013a0000
00000000
00000000
905410b5
00000000
00000000
00000000
00004c06

37

PCI Performance October 12, 2004

A.2 Dwual 8MB memory region

The following configuration leaves the PLX-9054 BAR1 I/O region enabled, and sets up BAR2/Local
address space 0 as 8MB of prefetchable memory, and BAR3/Local address space 1 as 8MB of non-
prefetchable memory. The EEPROM configuration file is:

PLX-9054 Serial EEPROM Settings
DWH 12/03. Leave PCI9054 I/0 region enabled

#
#
#
Byte | Dword
offset | value
address|

#

00 905410b5

04 0680000a

08 00000100

Oc 00000000

10 00000000

14 ££800008

18 00000001

1c 10200000

20 00300500

24 00000000

28 00000000

2c 4b4300c3

30 ££££0000

34 01390000

38 013a0000

3c 00000000

40 00000000

44 905410b5

48 ££800000

4c 00000001

50 00000073

54 00004c06

38

PCI Performance

October 12, 2004

B PCI Configuration Space Registers Dumps

This appendix contains the PCI configuration space register values read back using /sbin/lspci
from the PLX-9054 for; a blank EEPROM, single 8MB region, and dual 8MB region. The three

different register settings were read from three boards booted in the same crate.

Blank EEPROM read-back:

03:0b.0 Bridge: PLX Technology, Inc. PCI <-> I0Bus Bridge (rev Oa)

Subsystem: PLX Technology, Inc. PCI <-> I0Bus Bridge

Control: I/0+ Mem+ BusMaster- SpecCycle- MemWINV+ VGASnoop-
ParErr- Stepping- SERR+ FastB2B-

Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)
Status: DO PME-Enable- DSel=0 DScale=0 PME-
Capabilities:

Capabilities:

>TAbort- <TAbort- <MAbort- >SERR- <PERR-
Interrupt: pin A routed to IRQ 7
Region O0:
Region 1:
Region 2:
Region 3:
Expansion ROM at <unassigned> [disabled] [size=64K]
Capabilities: [40] Power Management version 1

Memory at £3d00000 (32-bit, non-prefetchable) [size=256]

I/0 ports at 2000 [size=256]

Memory at £3c00000 (32-bit, non-prefetchable) [size=1M]
Memory at £3b00000 (32-bit, non-prefetchable) [size=1M]

[48] #06 [0080]
[4c] Vital Product Data

03:0b.0 Bridge:

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
al:
bO:
cO:
do:
e0:
f0:

b5
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00

10
00
00
00
48
00
00
00
00
00
00
00
00
00
00
00

54
do
00
00
01
00
00
00
00
00
00
00
00
00
00
00

90
£3
00
00
00
00
00
00
00
00
00
00
00
00
00
00

PLX Technology, Inc.

13
01
00
40
00
00
00
00
00
00
00
00
00
00
00
00

01
20
00
00
00
00
00
00
00
00
00
00
00
00
00
00

90
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Oa
00
00
00
06
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
4c
00
00
00
00
00
00
00
00
00
00
00

80
c0
00
00
80
00
00
00
00
00
00
00
00
00
00
00

PCI <-> IOBus Bridge (rev 0a)

06
£3
00
00
00
00
00
00
00
00
00
00
00
00
00
00

08
00
b5
07
03
00
00
00
00
00
00
00
00
00
00
00

40
00
10
01
00
00
00
00
00
00
00
00
00
00
00
00

00
b0
54
00
00
00
00
00
00
00
00
00
00
00
00
00

00
£3
90
00
00
00
00
00
00
00
00
00
00
00
00
00

39

PCI Performance

October 12, 2004

Single 8MB region read-back:

03:0d.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)

Subsystem: PLX Technology, Inc. PCI <-> IOBus Bridge

Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop-
ParErr- Stepping- SERR+ FastB2B-

Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium

Latency: 64, cache line size 08

>TAbort- <TAbort- <MAbort- >SERR- <PERR-

Interrupt: pin A routed to IRQ 9

Region 0: Memory at £3d00800 (32-bit, non-prefetchable) [size=256]
Region 1: Memory at fa000000 (32-bit, prefetchable) [size=8M]

Capabilities: [40] Power Management version 1

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)
Status: DO PME-Enable- DSel=0 DScale=0 PME-
Capabilities:

Capabilities:

[48] #06 [0080]
[4c] Vital Product Data

03:0d4.0 Bridge:

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
al:
bO:
cO:
do:
e0:
f0:

b5
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00

10
08
00
00
48
00
00
00
00
00
00
00
00
00
00
00

54
do
00
00
01
00
00
00
00
00
00
00
00
00
00
00

90
£3
00
00
00
00
00
00
00
00
00
00
00
00
00
00

PLX Technology, Inc.

17
08
00
40
00
00
00
00
00
00
00
00
00
00
00
00

01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

90
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
fa
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Oa
00
00
00
06
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
4c
00
00
00
00
00
00
00
00
00
00
00

80
00
00
00
80
00
00
00
00
00
00
00
00
00
00
00

PCI <-> IOBus Bridge (rev 0a)

06
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

08
00
b5
09
03
00
00
00
00
00
00
00
00
00
00
00

40
00
10
01
00
00
00
00
00
00
00
00
00
00
00
00

00
00
54
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
90
00
00
00
00
00
00
00
00
00
00
00
00
00

40

PCI Performance October 12, 2004

Dual 8MB region read-back:

03:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
Subsystem: PLX Technology, Inc. PCI <-> IOBus Bridge
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop-
ParErr- Stepping- SERR+ FastB2B-
Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium
>TAbort- <TAbort- <MAbort- >SERR- <PERR-
Latency: 64, cache line size 08
Interrupt: pin A routed to IRQ 10
Region 0: Memory at £3d00400 (32-bit, non-prefetchable) [size=256]
Region 1: I/0 ports at 2400 [size=256]
Region 2: Memory at £9800000 (32-bit, prefetchable) [size=8M]
Region 3: Memory at f£4000000 (32-bit, non-prefetchable) [size=8M]
Capabilities: [40] Power Management version 1
Flags: PMEClk- DSI- D1- D2- AuxCurrent=0OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)
Status: DO PME-Enable- DSel=0 DScale=0 PME-
Capabilities: [48] #06 [0080]
Capabilities: [4c] Vital Product Data

03:0c.0 Bridge: PLX Technology, Inc. PCI <-> I0Bus Bridge (rev Oa)
00: b5 10 54 90 17 01 90 02 Oa 00 80 06 08 40 00 00
10: 00 04 40 £3 01 24 00 00 08 00 80 £9 00 00 00 f4
20: 00 00 00 OO 00 00 00 00 OO OO 00 00 b5 10 54 90
30: 00 00 00 00 40 00 00 00 00 00 00 00 Oa 01 00 00
40: 01 48 01 00 00 00 00 00 06 4c 80 00 03 00 00 00
50: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60: 00 00 00 OO 00 00 00 00 OO OO OO 00 00 OO0 00 00
70: 00 00 00 OO 00 00 00 00 OO OO OO 00 00 OO0 00 00
80: 00 00 00 OO 00 00 00 00 OO OO 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0O: 00 00 00 00 00 OO 00 00 00 OO0 00 OO 00 00 00 00
cO: 00 00 00 00 00 00 00 OO 0O 00 00 00 OO OO 00 00
d0: 00 00 00 00 00 OO 00O 00 00 00 00 OO 00 00 00 00
e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
£0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

41

PCI Performance

October 12, 2004

C Configuration Registers Dumps

This appendix contains the register values read back from the PLX-9054 BARO for; a blank EEP-
ROM, single 8MB region, and dual 8MB region. These registers were read using the plx_debug
utility found in the COBRA driver source. The three different register settings were read from three
boards booted in the same crate.

Blank EEPROM read-back:

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
AO:
BO:
CO:
DO:
EO:
FO:

FFFO0000
FFFFO000
00000000
00000000
00000000
00000000
00000000
905410B5
00000043
00000000
00000000
00000000
00000002
00000000
00000000
FFFO0000

00000000
00000000
00000000
00000008
00000000
00000000
00000000
0000000A
00000000
00000043
00000000
00000000
00000000
00000000
00000000
00000000

00200000
40430043
00000000
00000000
00000000
00000000
0F010180
00000000
00000000
00000000
00001010
00000000
00000000
00000000
00000050
00000043

Single 8MB region read-back:

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
AO:
BO:
CO:
DO:
EO:
FO:

FF800008
00000000
01390000
00000000
00000000
00000000
00000000
905410B5
00000043
00000000
00000000
00000000
00000002
00000000
00000000
00000000

00000001
00000000
013A0000
00000008
00000000
00000000
00000000
0000000A
00000000
00000043
00000000
00000000
00000000
00000000
00000000
00000000

10200000
4B4300C3
00000000
00000000
00000000
00000000
0F010180
00000000
00000000
00000000
00001010
00000000
00000000
00000000
00000050
00000000

00300500
00000000
00000000
00000000
00000000
00000000
080F767E
00000000
00000000
00000000
00200000
00000000
00000000
00000000
00000000
00000000

00300600
FFFFO0000
00000000
00000000
00000000
00000000
180F767E
00000000
00000000
00000000
10200000
00000000
00000000
00000000
00000000
00000000

42

PCI Performance October 12, 2004

Dual 8MB region read-back:

00: FF800008 00000001 10200000 00300500
10: 00000000 00000000 4B4300C3 FFFF0000
20: 01390000 013A0000 00000000 00000000
30: 00000000 00000008 00000000 00000000
40: 00000000 00000000 00000000 00000000
50: 00000000 00000000 00000000 00000000
60: 00000000 00000000 OF010180 180F767E
70: 905410B5 0000000A 00000000 00000000
80: 00000043 00000000 00000000 00000000
90: 00000000 00000043 00000000 00000000
AO: 00000000 00000000 00001010 10200000
BO: 00000000 00000000 00000000 00000000
CO: 00000002 00000000 00000000 00000000
DO: 00000000 00000000 00000000 00000000
EO: 00000000 00000000 00000050 00000000
FO: FF800000 00000001 00000073 00000000

43

PCI Performance

D PCI-to-PCI Bridge Dumps

The following PCI-to-PCI bridge configurations were read during the dual chassis test.

/sbin/lspci

October 12, 2004

00:00.0 Host bridge: ServerWorks CNB20LE Host Bridge (rev 06)
00:00.1 Host bridge: ServerWorks CNB20LE Host Bridge (rev 06)
00:01.0 Ethernet controller: Intel Corp. 82559ER (rev 09)

00:02.0 Ethernet controller: Intel Corp. 82559ER (rev 09)

00:04.0 PCI bridge: Force Computers: Unknown device 0001 (rev 01)
00:0f.0 ISA bridge: ServerWorks 0SB4 South Bridge (rev 50)

00:0f.1 IDE interface: ServerWorks 0SB4 IDE Controller

00:0f.2 USB Controller: ServerWorks 0SB4/CSB5 OHCI USB Controller (rev 04)
01:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge

01:0a.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
01:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
01:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
01:0d4.0 PCI bridge: Intel Corp. 21152 PCI-to-PCI Bridge

02:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge

02:0a.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
02:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
02:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
02:0d.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
02:0e.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
02:0f.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev Oa)
03:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
03:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
03:0d.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev Oa)
03:0e.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
03:0f.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
04:04.0 PCI bridge: Digital Equipment Corporation DECchip 21150 (rev 06)
05:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge

05:0a.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
05:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
06:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge

06:0a.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
06:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0a)
06:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
06:0d.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
06:0e.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0a)
06:0f.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
07:0b.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
07:0c.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0a)
07:0d.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev Oa)
07:0e.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0Oa)
07:0f.0 Bridge: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 0a)
/sbin/lspci -s 00:04.0 -vv

00:04.0 PCI bridge:
decode])

Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Force Computers: Unknown device 0001 (rev 01) (prog-if 00 [Normal

44

PCI Performance October 12, 2004

Latency: 64, cache line size 08

Region 0: Memory at ed022000 (32-bit, non-prefetchable) [size=4K]

Region 1: I/0 ports at 1000 [size=128]

Bus: primary=00, secondary=01, subordinate=07, sec-latency=64

Memory behind bridge: ed100000-ed6fffff

Prefetchable memory behind bridge: ee000000-fb7fffff

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-
Capabilities: [fc] #06 [0080]

Capabilities: [fO] Message Signalled Interrupts: 64bit- Queue=0/0 Enable-
Address: 00000000 Data: 0000

/sbin/lspci -s 01:04.0 -vv

01:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge (prog-if 00 [Normal decode])
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=01, secondary=02, subordinate=03, sec-latency=68

Memory behind bridge: ed200000-ed3fffff

Prefetchable memory behind bridge: 00000000e£800000-00000000£4£00000

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-

Capabilities: [dc] Power Management version 1

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)

Status: DO PME-Enable- DSel=0 DScale=0 PME-

Bridge: PM- B3+

/sbin/lspci -s 01:04.0 -vv

01:04.0 PCI bridge: Intel Corp. 21152 PCI-to-PCI Bridge (prog-if 00 [Normal decode])
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=01, secondary=04, subordinate=07, sec-latency=68

Memory behind bridge: ed400000-ed6fffff

Prefetchable memory behind bridge: 00000000£5000000-00000000£b700000

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-

Capabilities: [dc] Power Management version 2

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)

Status: DO PME-Enable- DSel=0 DScale=0 PME-

Bridge: PM- B3+

/sbin/lspci -s 02:04.0 -vv

02:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge (prog-if 00 [Normal decode])
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=02, secondary=03, subordinate=03, sec-latency=68

Memory behind bridge: ed300000-ed3fffff

45

PCI Performance October 12, 2004

Prefetchable memory behind bridge: 00000000£2800000-00000000£4£00000
BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-
Capabilities: [dc] Power Management version 1

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)
Status: DO PME-Enable- DSel=0 DScale=0 PME-

Bridge: PM- B3+

/sbin/lspci -s 04:04.0 -vv

04:04.0 PCI bridge: Digital Equipment Corporation DECchip 21150 (rev 06) (prog-if 00 [
Normal decode])

Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=04, secondary=05, subordinate=07, sec-latency=68

Memory behind bridge: ed400000-ed6fffff

Prefetchable memory behind bridge: 00000000£5000000-00000000£b700000

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-

Capabilities: [dc] Power Management version 1

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)

Status: DO PME-Enable- DSel=0 DScale=0 PME-

Bridge: PM- B3+

/sbin/lspci -s 05:04.0 -vv

05:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge (prog-if 00 [Normal decode])
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=05, secondary=06, subordinate=07, sec-latency=68

Memory behind bridge: ed500000-ed6fffff

Prefetchable memory behind bridge: 00000000£6000000-00000000£b700000

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-

Capabilities: [dc] Power Management version 1

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)

Status: DO PME-Enable- DSel=0 DScale=0 PME-

Bridge: PM- B3+

/sbin/lspci -s 06:04.0 -vv

06:04.0 PCI bridge: Intel Corp. 21154 PCI-to-PCI Bridge (prog-if 00 [Normal decode])
Control: I/0+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR
+ FastB2B-

Status: Cap+ 66Mhz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort-
>SERR- <PERR-

Latency: 64, cache line size 08

Bus: primary=06, secondary=07, subordinate=07, sec-latency=68

Memory behind bridge: ed600000-ed6fffff

Prefetchable memory behind bridge: 00000000£9000000-00000000£b700000

BridgeCtl: Parity- SERR- NoISA+ VGA- MAbort- >Reset- FastB2B-

Capabilities: [dc] Power Management version 1

46

PCI Performance October 12, 2004

Flags: PMEClk- DSI- D1- D2- AuxCurrent=OmA PME(DO-,D1-,D2-,D3hot-,D3cold-)
Status: DO PME-Enable- DSel=0 DScale=0 PME-
Bridge: PM- B3+

47

